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Recently we published independently in the same issue of this
journal two papers dealing with computational modeling of Blood-
Brain Barrier (BBB) penetration by organic compounds (1,2). The
BBB is a physiological barrier expressing numerous transporters
that seperates the brain from the bloodstream and functions to
maintain homeostasis while also acting as a barrier to many
pharmaceuticals. There have been at least 40 studies published
since 1988 which we have summarized (1,2) that derive various
quantitative structure activity relationship (QSAR) or classification
models for BBB penetration data. The publication of our papers
covering the same topic in itself perhaps is not unusual due to the
importance of predicting brain penetration of drugs in the
pharmaceutical industry. Perhaps more surprising however was that
despite the important differences in our modeling approaches,
overall we were able to achieve comparable levels of prediction
accuracy. This concurrence of results indicates that perhaps we have
captured the intrinsic relationship between compound structure and
its ability to cross the BBB barrier, indicating that it is possible to
achieve highly predictive models. This perspective summarizes
these studies briefly and highlights areas of future research.

First, let us look at the two studies in more detail. The study
by Zhang et al., generated k-nearest neighbors (k-NN) and support
vector machine (SVM) QSAR quantitative models using between
184 and 346 Dragon, MOE or MolConnZ descriptors with a
training set of 144 molecules and a test set of 15 molecules (2). In
addition these models were tested with two binary classification
sets of 99 and 267 compounds. The study of Kortagere et al.,
generated a simple regression model with eight descriptors (logP,
TPSA, logS, mass, volume, number of rotatable bonds, number of

oxygen atoms and number of nitrogen atoms calculated in MOE)
for 78 compounds and tested it with 100 compounds (1). In
addition, SVM classification models with the eight MOE or shape
signatures descriptors were built with training sets of 376 or 351
compounds (in both cases the datasets were composed of more
BBB+ than BBB- compounds), leave 20%-out and 10-fold cross
validation was performed. All QSAR and classification models in
this study were also tested on an external set of 389 drugs in order
to predict known BBB+ compounds (1). So in both cases there
were significant differences in the approaches used but also areas
of overlap. One approach focused on generating continuous
property QSAR models while the other produced classification as
well as a continuous QSAR models. In both studies the binary test
sets were also of a comparable size to the training sets. In contrast
to many of the prior BBB models reviewed in each paper, both
studies placed a significant emphasis on the validation of the
models generated using statistics for testing as well as measures
for the applicability domain (2) or chemical space (1) of the
training and test sets. The use of the Euclidean distance
applicability domain cut-off could be used to improve test set
prediction accuracy (2), while the regression and classification
studies illustrated a good overlap of the chemical space as
described using principal component analysis with the molecular
descriptors for the training and test sets (1).

The methodological differences notwithstanding the perfor-
mance of the best models in both studies appear remarkably
congruent. The SVM models with shape signatures descriptors had
prediction accuracies of 80–83% for the 10 fold cross validation
and could correctly predict 84% of BBB+ drugs (1). The k-NN-
MOE model performed the best in the second study with an
accuracy of 82% for the 99 compound test set and the k-NN-
Dragon model had an accuracy of 100% with the applicability
domain (2). In both cases when the datasets contain more BBB+
compounds than BBB- there is a clear bias towards more accurate
prediction of BBB+ (1,2). One dataset we used for SVM modeling
was more balanced (3) and the resultant SVM models were also
approximately equivalent in the prediction of BBB+ and BBB−
[Table III in (1)]. Interestingly the 78 molecule regression model
performed better when predicting BBB− compounds in all of the
different test sets evaluated.

It would appear that we may have demonstrated in both
papers an upper limit on test set classification (in the absence of
applicability domain measures) of approximately 80%. Both
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groups also suggested a consensus of the different models in each
individual paper. In one case we suggested it represented an
average of all the models (1) while in another the prediction
accuracy was slightly lower than the best individual model (2).
Perhaps we should explore developing a joint consensus prediction
model by combining models developed in both studies; as we have
convincingly demonstrated recently, the consensus modeling
appears highly beneficial as compared to any of the contributing
models (4). Overall both studies are clearly complimentary,
reflecting at least the state of the art in algorithms, interpretable
descriptors that describe shape and surface area (2D and 3D) and
the largest BBB datasets currently available from the literature.

So what should we focus on in the future? Certainly we
require larger training and test sets that are well balanced in the
distribution of logBB values or in the binary categories. In current
studies we have had access to at most, nearly 400 compounds with
classification data or 159 compounds with quantitative logBB
data. These molecules may not all be drugs or drug-like and the
representation of chemical space, lead-likeness, drug-likeness etc.,
will be sparse. It is important therefore that future general BBB
models are used to predict drug databases (not in the model) as we
attempted in both our studies. At the very least a series of lead
compounds should be compared to show the limitations of a global
model versus a local model for predicting BBB. Also as indicated
in one of our studies (2) we need to identify molecules that may be
substrates for efflux transporters like P-glycoprotein (P-gp) which
could confound our predictions of BBB permeability. This might
be achieved by parallel prediction of molecules P-gp substrate
liability using a QSAR model, pharmacophore or classification
model (in the same way as carried out in these BBB studies) using
machine learning methods.

After over 20 years of computational studies and many BBB
models (1,2) our independent studies suggest that we may be
approaching a turning point in the modeling of this important
property. Without the luxury of large datasets (as available for

solubility and logP, logD which include many thousands of data
points) validation of the latest BBB models with up to several
hundred molecules, suggests we have reached a peak in prediction
accuracy for known drugs and drug-like chemicals. Although there
is certainly still room for methodological improvements, perhaps
the next stage is for these BBB models to become more widely
disseminated and used in drug discovery to promote experimental
validation studies that would in turn enrich experimental datasets
available for modeling. This could be facilitated in the same way
that other physicochemical and molecular properties are predicted
routinely in databases of small molecules such as ChemSpider
(www.chemspider.com) and eMolecules (www.emolecules.com).
We hope that other researchers will continue to validate these and
future models and in turn publish their valuable data in this and
other journals.
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